skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neal, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Persistent main memory (PM) dramatically improves IO performance. We find that this results in file systems on PM spending as much as 70% of the IO path performing file mapping (mapping file offsets to physical locations on storage media) on real workloads. However, even PM-optimized file systems perform file mapping based on decades-old assumptions. It is now critical to revisit file mapping for PM. We explore the design space for PM file mapping by building and evaluating several file-mapping designs, including different data structure, caching, as well as meta-data and block allocation approaches, within the context of a PM-optimized file system. Based on our findings, we design HashFS, a hash-based file mapping approach. HashFS uses a single hash operation for all mapping and allocation operations, bypassing the file system cache, instead prefetching mappings via SIMD parallelism and caching translations explicitly. HashFS’s resulting low latency provides superior performance compared to alternatives. HashFS increases the throughput of YCSB on LevelDB by up to 45% over page-cached extent trees in the state-of-the-art Strata PM-optimized file system 
    more » « less
  2. null (Ed.)
    Persistent Memory (PM) can be used by applications to directly and quickly persist any data structure, without the overhead of a file system. However, writing PM applications that are simultaneously correct and efficient is challenging. As a result, PM applications contain correctness and performance bugs. Prior work on testing PM systems has low bug coverage as it relies primarily on extensive test cases and developer annotations. In this paper we aim to build a system for more thoroughly testing PM applications. We inform our design using a detailed study of 63 bugs from popular PM projects. We identify two application-independent patterns of PM misuse which account for the majority of bugs in our study and can be detected automatically. The remaining application-specific bugs can be detected using compact custom oracles provided by developers. We then present AGAMOTTO, a generic and extensible system for discovering misuse of persistent memory in PM applications. Unlike existing tools that rely on extensive test cases or annotations, AGAMOTTO symbolically executes PM systems to discover bugs. AGAMOTTO introduces a new symbolic memory model that is able to represent whether or not PM state has been made persistent. AGAMOTTO uses a state space exploration algorithm, which drives symbolic execution towards program locations that are susceptible to persistency bugs. AGAMOTTO has so far identified 84 new bugs in 5 different PM applications and frameworks while incurring no false positives. 
    more » « less